Solid-State and Solution Structural Studies of 4-{[*C***(***E***)]-1***H***-Azol-1 ylimino)methyl}pyridin-3-ols**

by **Dionisia Sanz***a), **Almudena Perona**a), **Rosa M. Claramunt**a), **Elena Pinilla***b), **M. Rosario Torres**b), and **José Elguero**^c)

a) Departamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Senda del Rey 9, ES-28040 Madrid (fax: +34913988372; e-mail: dsanz@ccia.uned.es)

b) Departamento de Química Inorgánica, Laboratorio de Difracción de Rayos X, Facultad de Ciencias Químicas, Universidad Complutense, ES-28040 Madrid (e-mail: epinilla@quim.ucm.es)

c) Instituto de Química Médica (CSIC), Centro de Química Orgánica 'Manuel Lora Tamayo', Juan de la Cierva 3, ES-28006 Madrid

The new *N*-salicylideneheteroarenamines **1**–**4** were prepared by reacting the biologically relevant 3 hydroxy-4-pyridinecarboxaldehyde (**5**) with 1*H*-imidazol-1-amine (**6**), 1*H*-pyrazol-1-amine (**7**), 1*H*-1,2,4 triazol-1-amine (8), and $1H$ -1,3,4-triazol-1-amine (9). Solution ${}^{1}H$ -, ${}^{13}C$ -, and ${}^{15}N$ -NMR were used to establish that the hydroxyimino form **A** is the predominant tautomer. A combination of ¹³C- and ¹⁵N-CPMAS-NMR with X-ray crystallographic studies confirms that the same form is present in the solid state. The stabilities and H-bond geometries of the different forms, tautomers and rotamers, are discussed by using B3LYP/6-31G** calculations.

1. Introduction. – *N*-Salycilidenearenamines (salicylidene = (2-hydroxyphenyl)methylene) show hydroxyimino **A**/oxoenamino **B** tautomerism, due to a proton-transfer process both in solution and in the solid state (*Scheme 1*) [1][2].

It has been established that in aromatic *Schiff* bases of *o*-hydroxybenzaldehydes, the equilibrium, normally favoring **A**, is shifted toward tautomer **B** when increasing the polarity of the solvent or the electron-withdrawing ability of the substituent R [1]. However, the N-H form **B** is rarely found $[2][3]$.

Recently, we have been involved in the study of aromatic *Schiff* bases derived from 3-hydroxypyridine-4-carboxaldehyde (**5**) in an attempt to model the H-bonded structure of the cofactor pyridoxal-5'-phosphate $(=3-hydroxy-2-methyl-5-[(phos-1)D/2]$ phonooxy)methyl]pyridine-4-carboxaldehyde) intervening in various enzymatic transformations of amino acids [4]. As a continuation of that project, we decided to exploit

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

our experience in the chemistry of *N*-aminoazoles [5 –11] by preparing the *Schiff* bases **1** – **4** to study how the change in the nature of the substituent, heteroaromatic *vs.* aromatic, would affect the prototropic tautomerism of *Scheme 1*.

Moreover, the existence of additional H-bonding acceptors in the same molecule should modify the formation of the H-bonded network approaching what occurs in biological processes [12].

2. Results and Discussion. – The 4-[(1*H*-azol-1-ylimino)methyl] pyridin-3-ols **1** – **4** were prepared with good yields, by reaction of 3-hydroxypyridine-4-carboxaldehyde (**5**) with the corresponding 1*H*-azol-1-amines **6**– **9** [5] (*Scheme 2*).

Although (*E*)- and (*Z*)-isomers could be formed in the reaction, only the (*E*)-form was detected in all cases, as established by 2D-NOESY-NMR experiments showing the correlation between the imino proton and $H-C(5)$ of the pyridine ring, as well as with $H-C(5')$ of the azole moiety (or $H-C(2')$ in the cases of 1 and 4) (*Sect. 2.2*). These results are in full agreement with B3LYP/6-31G** calculations that favor the (*E*)-isomer by 57.8 kJ mol⁻¹ in compound **1** (from **6**), 46.7 kJ mol⁻¹ in **2** (from **7**), 49.1 kJ mol⁻¹ in **3** (from **8**) and 54.6 kJ mol⁻¹ in **4** (from **9**). The same theoretical method was used to study the **A**/**B** tautomerism represented in *Scheme 1*: in the cases of compounds **1** and **4**, the **A** tautomer with (*E*)-configuration is more stable than **B** by *ca.* 50 kJ mol⁻¹. The presence of an N-atom in the α position of the azolyl moiety, such as in compounds **2** and **3**, further increases the difference in stability to the point that only tautomer **A** is a minimum. As we will show later on, these results are in agreement with the experimental observations.

The OH group of **1** – **4** can form an intramolecular H-bond with the N-atom, or intermolecular H-bonds with an N-atom of neighboring molecules. Moreover, there are 6 possible conformations for each **1** –**3** and 3 possible conformations for **4** due to rotations around the N-N, C-O, and C-C single bonds (*Fig. 1*). The results of the B3LYP/6-31G** calculations of the minimum energies of the various rotamers are summarized in *Table 1* showing that, in the case of isolated molecules in the gas phase, the **a** form presenting an intramolecular H-bond is always the most stable.

When looking at the azole moieties, only **2** and **3** have an N-atom at position N(2'), this being the reason why conformer **a** is favored. In compound **4**, conformers **a** and **b**, **c**

Fig. 1. *Calculated conformations for 4-{[*C*(*E*)]-(1*H*-azol-1-ylimino)methyl}pyridin-3-ols* **1**–**4** *with atom numbering*

and **d**, and **e** and **f** are pairwise identical, and finally in the imidazole derivative **1**, where all conformations are different, the relative stability order is **a**>**b**>**e**>**f**>**c**>**d** (*Table 1*). In other words, an N-atom in the β -position of the azolyl moiety (series 1) prefers the s-*trans* conformation by *ca.* 4.5 kJ mol⁻¹, in the *a*-position (series 2) favors the s-*cis* conformation by *ca*. 24.5 kJ mol⁻¹, and in case of N-atoms in both the α - and β position (series 3), the effects approximately add $(ca. 26.0 \text{ kJ mol}^{-1})$.

2.1. *Crystal and Molecular Structures.* An X-ray study of all compounds was undertaken, but in the case of **2**, no appropriate crystals could be obtained. Crystals of **1**, **3**, and **4** consist in rotamers **e** interacting through intermolecular H-bonds, which led to different secondary structures. Selected bond distances and angles as well as the Hbond geometries are collected in *Table 2* and *3*, respectively.

HELVETICA CHIMICA ACTA – Vol. 89 (2006) 1293

		A	b	c	d	e	
1	$+ZPE$	$-641.9652(0.0)$ $-641.7985(0.0)$	4.4 4.0	37.2 35.0	42.7 40.0	23.0 21.2	28.2 25.9
$\overline{2}$	$+ZPE$	$-641.9584(0.0)$ $-641.7914(0.0)$	23.01 21.84	38.5 36.4	68.0 64.2	26.8 25.0	51.2 48.1
3	$+ZPE$	$-658.0049(0.0)$ $-657.8493(0.0)$	25.5 23.8	35.4 33.3	66.3 63.2	24.0 22.3	51.1 47.6
$\boldsymbol{4}$	$+ZPE$	$-657.9832(0.0)$ $-657.8289(0.0)$	0.0 0.0	34.2 32.5	34.2 32.5	20.3 19.1	20.3 19.1

Table 1. *Absolute Energies* [Hartree] and Relative Energies [kJ mol⁻¹]

	1	3	4		1	3	4
$C(1)$ -O(1) 1.355(3) 1.340(2) 1.344(2)				$O(1) - C(1) - C(5)$	119.3(2)	119.1(2)	119.7(2)
$C(1) - C(5)$ 1.402(3) 1.398(2) 1.389(3)				$C(5)-C(1)-C(2)$	118.4(3)	118.6(2)	118.8(2)
$C(1) - C(2)$ 1.394(3) 1.393(3) 1.388(3)				$C(1) - C(5) - C(6)$	120.3(2)	118.7(2)	120.4(2)
$C(2) - N(1)$ 1.336(3) 1.334(2) 1.331(3)				$C(6)-N(2)-N(3)$	117.3(2)	116.1(2)	116.8(2)
$C(3) - N(1)$ 1.347(3) 1.340(2) 1.341(3)				$C(1)$ – $O(1)$ – $H(1)$	107.5	113.1	112.1
$C(3) - C(4)$ 1.367(3) 1.374(3) 1.377(3)				$O(1) - C(1) - C(2) - N(1)$	179.6(3)	$-179.0(2)$	179.4(2) $\overline{}$
$C(4) - C(5)$ 1.396(3) 1.393(3) 1.401(3)				$O(1)$ –C(1)–C(5)–C(4)	178.6(2)	178.2(2)	179.9(2)
$C(5)-C(6)$ 1.468(3) 1.465(3) 1.461(3)				$C(5)-C(6)-N(2)-N(3)$	179.9(2)	179.1(2)	177.6(2)
$C(6)-N(2)$ 1.281(3) 1.276(2) 1.271(3)				$N(4) - C(7) - N(3) - N(2)$	$-179.3(2)$	$-179.3(2)$	178.2(2)
$N(2) - N(3)$ 1.387(3) 1.386(2) 1.396(2)				$C(6)-N(2)-N(3)-C(9)$	2.9(5)	$\overline{}$	
				$C(6)-N(2)-N(3)-C(7)$	$-179.3(2)$	$-178.5(2)$	174.0(2)
				$C(6)-N(2)-N(3)-N(5)$		2.9(3)	
				$C(6)-N(2)-N(3)-C(8)$			$-9.2(4)$

Table 2. *Selected Bond Lengths* [Å] *and Angles* [8] *for Compounds* **1**, **3**, *and* **4**

Table 3. *Data of Hydrogen Bonds of Compounds* **1**, **3**, *and* **4**

	$D-H \cdots A$	δ (D-H) [Å]	$\delta(H \cdots A) [\AA]$	$\delta(D \cdots A) [\AA]$	\langle (DHA) \lceil ^o]
-1	$O(1) - H(1) \cdots N(4)^a$	1.09	1.59	2.666(3)	166.0
3	$O(1) - H(1) \cdots N(1)^{b}$	0.95	1.69	2.616(2)	164.3
$\overline{4}$	$O(1) - H(1) \cdots O(2)$	1.08	1.55	2.615(2)	168.7
	$O(2) - H(2A) \cdots N(1)^c$	0.98	1.92	2.858(2)	158.2
	$O(2) - H(2B) \cdots N(5)^d$	1.00	1.79	2.761(2)	163.4

Molecular drawings of **1**, **3**, and **4** are presented in *Figs. 2* – *4*. All molecules are almost planar with the maximum deviation for **4** (*Table 2*), and the geometries are in agreement with those calculated for the corresponding conformers.

The H-bond in **1** and **3** lead to zig-zag chains in the [203] and [010] directions, respectively. In compound 4 the intermolecular H-bonds involve a H_2O molecule, forming layers parallel to the (103) plane. In the three cases, the analysis of the intermolecular distances shows that the chains in **1** and **3** and the layers in **4** are independent.

2.2. *NMR Studies*. We recorded the ¹ H-NMR spectra (*Fig. 1* for atom numberings) of all four compounds $1-4$ in (D_6) DMSO solution, and analysis of the chemical shifts (see *Table 4*) led to the conclusion that only the hydroxyimino form **A** exists in all cases in the solvent (D_6) DMSO. Except for **2**, the 4-{ $[C(E)]$ - $(1H$ -azol-1-ylimino)methyl}pyridin-3-ols were not soluble in $CDCl₃$.

In the case of 1*H*-imidazol-1-ylimino derivative **1**, we detected in the NOESY plot the correlation of the imino proton with $H-C(5')$, $H-C(2')$, and $H-C(5)$ as well as that of OH with $H-C(2)$ thus establishing the disruption of the intramolecular H-bond (*Fig. 5*).

Only in CDCl₃, an intramolecular $O-H \cdot \cdot N = C H$ -bond was observed in the case of 1*H*-pyrazol-1-ylimino derivative 2 (*Fig 6,a*). In (D_6)DMSO, the NOESY plot (*Fig. 6,b*)

Fig. 2. *Molecular and crystal structures of* **1e**

Fig. 3. *Molecular and crystal structures of* **3e**

Fig. 4. *Molecular and crystal structures of* **4e**

	Solvent	$CH=N$	$H - C(2)$	OН	$H - C(5)$	$H-C(6)$
1	(D_6) DMSO	8.99	8.36	10.70	7.66	8.15
	CD ₃ OD	9.05	8.28	a)	7.81	8.14
$\overline{2}$	(D_6) DMSO	9.38	8.35	10.73	7.71	8.14
	CDCl ₃	9.23	8.50	10.09	7.29	8.27
3	(D_6) DMSO	9.38	8.38	10.92	7.72	8.16
$\boldsymbol{4}$	(D_6) DMSO	9.17	8.38	10.89	7.66	8.16
	^a) Replaced by OD.					

Table 4. *¹ H-NMR Chemical Shifts of the Iminomethylpyridinol Moiety. d* in ppm.

Fig. 5. *NOESY Plot* ((D6)DMSO) *of 4-{[*C*(*E*)]-(1*H*-imidazol-1-ylimino)methyl}pyridin-3-ol* (**1**)

Fig. 6. *NOESY Plots of 4-[[C(E)]-(1H-pyrazol-1-ylimino)methyl}pyridin-3-ol* (2): a) *in CDCl₃ and* b) *in (D6)DMSO*

revealed a correlation between $H-C(2)$ and OH, indicating the absence of intramolecular H-bonds in such a polar solvent [13]. For 2, the major changes of the ¹H-NMR data (*Table 4*) in going from CDCl₃ to (D_6) DMSO affected H-C(5) (δ 7.29 to 7.71) and the OH (*d* 10.09 to 10.73).

In the case of the 1*H*-1,2,4-triazol-1-ylimino derivative **3**, no correlations involving the imino proton could be detected, and in the case of the 1*H*-1,3,4-triazol-1-ylimino

		$CH=N$	C(2)	C(3)		$C(4)$ $C(5)$	C(6)
1	(D_6) DMSO		$147.6 (J = 170.5)$ 139.9 $(J = 179.1)$ 152.7			125.2 119.8 $(J=163.8)$ 140.6 $(J=181.1)$	
	CD ₃ OD	150.3	140.3	155.2		127.6 122.8	141.2
	$CPMAS^a$	144.4	138.1	154.4		124.6 119.2	141.1
			2 (D ₆)DMSO 144.2 ($J=172.2$) 139.9 ($J=176.5$) 152.9. 125.0 119.1 ($J=160.1$) 140.4 ($J=179.5$)				
	CDCl ₃	$150.3 (J = 172.1)$	140.8 $(J=179.9)$ 152.8			122.2 124.0 $(J=160.7)$ 141.2 $(J=182.4)$	
	$CPMAS^b$	140.7	$138h$)	153.7		126.0 119.6	$138h$)
		148.1		151.6		124.1 127.6	
	CPMAS ^c	140.0	(138 ^h)	154.3	129.0	120.3	$138h$)
			3 (D ₆)DMSO 147.8 ($J=172.5$) 140.1 ($J=179.6$) 153.1			124.2 119.1 $(J=164.0)$ 140.5 $(J=182.6)$	
	CPMAS ^d	146.0	139.3	153.7	122.9	120.7	143.3
	$CPMASe$)	147.4	143.0	155.9		124.0 119.9	143.0
			140.8	153.7	124.8		
					127.9		
4	(D_6) DMSO	$152.1 (J = 173.0)$	$140.1 (J=179.5)$ 152.9		124.5	119.5 $(J=166.7)$ 140.5 $(J=182.3)$	
	CPMAS ^f	148.4	135.4	154.1	124.6	120.7	144.2
	$CPMASg$)	$152h$)	(143 ^h)	$155h$)	$125h$)	$121h$)	(143 ^h)
		$148h$)		$152h$)	$122h$)	$119h$)	

Table 5. *13C-NMR Chemical Shifts and One-Bond Coupling Constants of the (Iminomethyl)pyridinol Moiety.* δ in ppm, $\frac{1}{J}$ in Hz.

^a) Crystallized from toluene; δ 138.1 (C(2')), 124.6 (C(4')), 113.1 (C(5')). ^b) Crystallized from EtOH/H₂O; δ 137.6 and 135.4 (C(3')), 108.2 and 106.0 (C(4')), 132.6 and 130.6 (C(5')). ^c) Dissolved in CHCl₃ and evaporated; δ 134.0 (C(3')), 110.3 (C(4')), 129.3 (C(5')). ^d) Crystallized from toluene; δ 149.9 and 149.5 (C(3')), *δ* 138.0 (C(5')). ^e) Crystallized from H₂O; *δ* 151.4 and 147.4 (C(3')), *δ* 138.8 and 137.1 $(C(5'))$. ^f) Crystallized from H₂O; δ 138.4 $(C(2'), C(5'))$. ^g) Crystallized from CHCl₃/EtOH; δ 135.0 $(C(2'), C(5'))$. h) Broad signal.

derivative **4**, the NOESY experiments revealed a mixture of rotamers $4e$ (= $4f$)/ $4c$ $(=4d)$.

Solution 13C-NMR studies (*Table 5*) showed signals for the C-atoms of the pyridine ring in agreement with the hydroxyimino structure (mean *d* values: 150 (CH=N), 140 (C(2)), 153 (C(3)), 125 (C(4)), 119.5 (C(5)), and 140.5 (C(6)). The *d*(C) for the azolyl substituents were within the normal ranges $[5][7-9]$ (see *Exper. Part*). The CH ¹³C-NMR signals were found by gs-HMQC, and the quaternary C-atoms were assigned by long-range correlation experiments (gs-HMBC) [14]. In contrast to the *Schiff* bases we previously studied [4], the δ (C) of the C(6)s and their ¹*J* coupling constants (*Table 5*) were always larger than those of the C(2)s. For **2**, when changing from CDCl₃ to (D_6) DMSO, the most affected δ (C) (*Table 5*) were those of CH=N (δ 150.3 to 144.2) and of C(5) (*d* 124.0 to 119.1), as expected for conformations **a** and **e**, respectively.

The 15N-NMR solution data were obtained by gs-HMBC (*Table 6*). The signals furnishing more information about the tautomerism in the 4-[(1*H*-azol-1-ylimino)methyl] pyridin-3-ols 1–4 are those of the CH=N moiety, which appeared between $\delta(N)$ –64.8 and -75.8 in (D_6) DMSO, *i.e.*, at values typical for the nonprotonated N-atom of a *Schiff* base $[1-4]$. They confirmed that compounds $1-4$ exist in the hydroxyimino tautomeric form **A**.

		$CH=N$	N(1)	N(1')	N(2')	N(3')	N(4')
1	$(D6)$ DMSO	-66.9	-52.9	-163.1		-120.8	
	$CPMAS^a$	-67.3	-56.0	-160.2		-142.5	
$\mathbf{2}$	(D_6) DMSO	-64.8	-53.1	-135.1	-94.5		
	CDCl ₃	-78.2	-57.5	-141.7	-97.8		
	$CPMAS^b$	-78.9	-55.6	-134.3	-95.7		
			-63.8	-136.8			
	CPMAS ^c	-85.7	-61.1	-133.5	-92.7		
3	(D_6) DMSO	-72.4	-50.5	-129.4	-103.6		-126.3
	$CPMASa$)	-74.2	-47.9	-126.3	-101.7		-138.9
	CPMAS ^d	-84.0	-63.5	-127.6	-101.3		-138.3
		-79.3		-122.5			
		-75.2					
		-71.9					
4	(D_6) DMSO	-75.8	-51.6	-164.9		-64.1	-64.1
	CPMAS ^e	-86.3	-65.2	-162.5		-82.7	-82.7
	CPMAS ^d	-75.7	55.2	-161.3		-71.7	-73.0
			59.7				

Table 6. *15N-NMR Chemical Shifts of* **1**–**4**. *d* in ppm.

^a) Crystallized from toluene. ^b) Crystallized from EtOH/H₂O. ^c) Dissolved in CHCl₃ and evaporated. ^d) Crystallized from H₂O. ^e) Crystallized from CHCl₃/EtOH.

The main results of the 13 C- and 15 N-CPMAS-NMR studies in the solid state, will be discussed for each derivative. Thus compound **1**, an **e** conformer, presented a single signal for each nucleus in the 13C-CPMAS-NMR. As shown above, the X-ray structure of **1** confirmed the intermolecular associations involving the OH donor and the $N(3')$ acceptor, thus affording an explanation for the increase of the $15N-NMR$ chemical shift $(\delta(\text{solid}) - \delta((D_6)$ DMSO) = -21.7, see *Table 6*).

In the case of **2**, we did not succeed in growing suitable crystals for X-ray studies. Therefore, the solid-state NMR conclusions could not be confirmed by the X-ray structure. When 2 was dissolved in $CHCl₃$ and then the solution rapidly evaporated prior to the recording of the 13C-CPMAS-NMR spectrum (*Fig. 7*,*a*, NQS (non-quaternary suppression), and *Fig. 7*,*b*), only one structure was observed, most probably the one that presents the intramolecular H-bond, conformation **2a**. When **2** crystallized from an EtOH/H2O mixture, two different rotamers **2a** and **2e** coexisted. This was clearly apparent from the $C(3)$ and $C(4)$ signals of the pyridine ring (*Fig. 7, c*, NQS) and $C(4')$ of the pyrazole moiety (*Fig. 7*,*d*). The **2a** form evolved towards a mixture of **2a** and **2e** on standing.

The 13C-CPMAS-NMR spectrum of **3** obtained from toluene showed the presence of only structure **3e**, but in the spectrum registered after recrystallization from H2O at least three distinct signals for C(4) were observed, attributable to the presence of other rotamers.

Crystals of 4 from H₂O corresponded to conformation **e**, but those obtained from CHCl3/EtOH afforded two types of molecules, **4e** and **4c**, as clearly observed in the splitting of $C(3)$ and $C(4)$ in the ¹³C-CPMAS-NMR spectra.

Fig. 7. *13C-CPMAS-NMR Spectra of compound* **2**

3. Conclusions. – The structure of *Schiff* bases derived from 3-hydroxypyridine-4 carboxaldehyde and four 1*H*-azol-1-amines was determined in the solid state (X-ray crystallography and CPMAS-NMR) and in solution (NMR and DFT calculations). Concerning tautomerism and E/Z isomerism about the C-N bond, all of them have the hydroxyimino structure with (*E*)-configuration. On the other hand, the conformation about the N-N and C-O single bonds strongly depends on the phase and the nature of the azolamine. In particular, in the solid state, $O-H \cdots N$ intermolecular Hbonds are always preferred to intramolecular ones.

This work was supported by *DGES*/*MCyT* (Project no. BQU2003-00976). One of us (*A. P.*) is indebted to the *MCyT* of Spain for an *FPI* grant.

Experimental Part

General. M.p.: under a microscope *Axiolab Zeiss* with a *TMS-92-Linkan* heating stage and by DSC with a *Seiko DSC 220C* connected to a *SSC5200H* disk station; thermograms: sample size 0.003–0.010 g, scanning rate 2.0° min⁻¹. TLC: aluminium-backed plates of silica gel 60 F_{254} (*Merck*, 0.2 mm). Elemental analyses: *Perkin-Elmer-240* apparatus; performed by the 'Centro de Microanálisis Elemental-UCM', Madrid.

NMR Spectroscopy [14]. Solution NMR spectra: *Bruker-DRX-400* (9.4 Tesla, 400.13 MHz for ¹H, 100.62 MHz for ¹³C and 40.56 MHz for ¹⁵N) spectrometer with a 5-mm inverse-detection H-X probe equipped with a *z*-gradient coil, at 300 K; chemical shifts δ in ppm rel. to the internal solvent CDCl₃ (*d*(H) 7.26 and *d*(C) 77.0), (D6)DMSO (*d*(H) 2.49 and *d*(C) 39.5), or CD3OD (*d*(H) 3.31 and *d*(C) 49.2) and rel. to the external standard nitromethane $(\delta(N)$ 0.00). Typical parameters for ¹H-NMR spectra: spectral width 4000 Hz, pulse width 7.5 µs, attenuation level 0 dB, resolution 0.15-0.25 Hz per point. Typical parameters for $13C-NMR$ spectra: spectral width 21 kHz, pulse width 10.6 μ s, attenuation level -6 dB, resolution 0.6 Hz per point, relaxation delay 2 s; WALTZ-16 was used for broadband proton decoupling; the FIDs were multiplied by an exponential weighting (*lb*=2 Hz) before *Fourier*transformation. 2D ¹H,¹H-gs-COSY and inverse proton-detected heteronuclear shift-correlation spectra, ¹H,¹³C-gs-HMQC, ¹H,¹³C-gs-HMBC, and ¹H,¹⁵N-gs-HMBC, were acquired and processed by using standard *Bruker* NMR software and in non-phase-sensitive mode. Gradient selection was achieved through a 5% sine truncated shaped pulse gradient of 1 ms. Selected parameters for ${}^{1}H,{}^{1}H$ -gs-COSY: spectral width 2500–3500 Hz, acquisition data size 1024 points, one transient accumulated per increment, relaxation delay 1 s, a total of 256 experiments, data processing by using zero filling in the *F*1 domain and shifted sine-bell apodization of factor 0 in both dimensions. Selected parameters for ${}^{1}H, {}^{1}H$ -gs-NOESY: spectral width 2000–3000 Hz, acquisition data size 1024 points, 32 transients accumulated per increment, relaxation delay 1 s, mixing time 750–1800 ms, a total of 512 experiments, data processing by using zero filling in the *F*1 domain and shifted sine-bell apodization of factor 0 in both dimensions. Selected parameters for $\rm ^1H, ^13C-gs$ -HMQC and gs-HMBC spectra: spectral width 2500–3500 Hz for ¹H and 12.0–20.5 kHz for ¹³C, 1024× 256 data set, number of scans 2 (gs-HMQC), or 4 (gs-HMBC), and relaxation delay 1s. The FIDs were processed by using zero filling in the *F*1 domain and a sine-bell window function in both dimensions was applied prior to *Fourier* transformation. In the gs-HMQC experiments, GARP modulation of 13C was used for decoupling. Selected parameters for ¹H,¹⁵N-gs-HMBC spectra: spectral width 2500–3500 Hz for ¹H and 12.5 kHz for ¹⁵N, 1024 × 256 data set, number of scans 4, relaxation delay 1s, 37–75 ms delay for the evolution of the 15N,1 H long-range coupling. The FIDs were processed by using zero filling in the *F*1 domain, and a sine-bell window function in both dimensions was applied prior to *Fourier* transformation.

Solid-state ¹³C- and ¹⁵N-CPMAS-NMR spectra: *Bruker-WB-400* spectrometer at 100.73 (¹³C) and 40.60 MHz (15N) and 300 K with a 4 mm *DVT* probehead. Samples were carefully packed in a 4-mmdiameter cylindrical zirconia rotor with Kel-F end-caps. Operating conditions involved 3.2 μ s 90[°] ¹H pulses and decoupling field strength of 78.1 kHz by TPPM sequence. The 13C spectra were originally referenced to a glycine sample and then the δ (C) were recalculated rel. to Me₄Si (carbonyl atom of glycine: δ 176.1). The ¹⁵N spectra were originally referenced to ¹⁵NH₄Cl and then converted to the nitromethane scale *via* the relationship $\delta(Me^{15}NO_2) = \delta(^{15}NH_4Cl) - 338.1$. Typical acquisition parameters for ¹³C-CPMAS-NMR: spectral width 40 kHz, recycle delay 60–120 s, acquisition time 30 ms, contact time 2–6 ms, and spin rate 12 kHz. To distinguish protonated and unprotonated C-atoms, the NQS (non-quaternary suppression) experiment by conventional cross-polarization was recorded; before the acquisition, the decoupler was switched off for a very short time of 25 μs [15][16]. Typical acquisition parameters for 15N-CPMAS-NMR: spectral width 40 kHz, recycle delay 60–120 s, acquisition time 35 ms, contact time 8 ms, and spin rate 6 kHz.

DFT Calculations. The optimization of the structures of all compounds discussed in this paper was carried out at the hybrid B3LYP/6-31G** level [17][18] with basis sets of Gaussian-type functions by using Spartan '02 for Windows [19].

Syntheses. Compounds **1**–**4** were prepared by refluxing in toluene equimolar amounts of **5** [4] and the corresponding amine **6**–**9** [5] during 7 h and stirring overnight: yield 85 –90%.

*4-{[*C*(*E*)]-(1*H*-Imidazol-1-ylimino)methyl}pyridin-3-ol* (**1**). TLC (CHCl3/EtOH 9 : 1): *Rf* 0.31. The crystals were purified by crystallization (C₇H₈). M.p. 251.4° (dec; DSC); under the microscope, 1 changed its appearance at 219° decomposing at 263°. ¹H-NMR $((D_6)$ DMSO): 10.70 (br. *s*, OH); 8.99 (*s*, CH=N); 8.36 (*s*, H-C(2)); 8.17 (*t*, ${}^{4}J(2',4') = {}^{4}J(2',5') = 1.3$, H-C(2')); 8.15 (*d*, ${}^{3}J(5,6) = 5.0$, H-C(6)); 8.04 (*t*, ${}^{3}J(4',$ 5')=⁴J(2',5')=1.3, H-C(5')); 7.66 (*d*, H-C(5)); 7.07 (*t*, H-C(4')). ¹³C-NMR ((D₆)DMSO): 152.7 (${}^{3}J=3$ = 4.7, C(3)); 147.6 (${}^{1}J=170.5$, ${}^{3}J=4.5$, CH=N); 140.6 (${}^{1}J=181.1$, ${}^{3}J=10.9$, C(6)); 139.9 (1 *J*=179.1, ³ *J*=11.2, C(2)); 136.4 (1 *J*=213.6, C(2')); 128.8 (1 *J*=190.7, ³ *J*=11.8, ² *J*=9.3, C(4')); 125.2 $(C(4))$; 119.8 $(^{1}J=163.8, ^{3}J=9.5, ^{2}J=3.5, C(5))$; 112.8 $(^{1}J=195.6, ^{3}J=2.7, ^{2}J=16.9, C(5'))$. ¹H-NMR

(CD₃OD): 9.05 (*s*, CH=N); 8.28 (*s*, H-C(2)); 8.18 (*t*, ${}^4J(2',4') = {}^4J(2',5') = 1.4$, H-C(2')); 8.14 (*d*, ${}^3J(5,$ 6) = 5.1, H-C(6)); 7.92 (*t*, ${}^{3}J(4'$,5') = 1.4, H-C(5')); 7.81 (*d*, H-C(5)); 7.13 (*t*, H-C(4')). ¹³C-NMR (CD₃OD): 155.2 (C(3)); 150.3 (CH=N); 141.2 (C(6)); 140.3 (C(2)); 138.0 (C(2)); 129.6 (C(4')); 127.6 $(C(4))$; 122.8 $(C(5))$; 113.6 $(C(5'))$. Anal. calc. for $C_9H_8N_4O$: C 57.44, H 4.28, N 29.77; found: C 57.35, H 4.34, N 29.84.

4-{[C(E)]-(1H-Pyrazol-1-ylimino)methyl}pyridin-3-ol (2). TLC (CHCl₃/EtOH 9:1): R_f 0.79. The crystals were purified by crystallization (CHCl₃). M.p. 163° (microscope) and 164.4° (DSC). ¹H-NMR $((D_6)$ DMSO): 10.73 (br. *s*, OH); 9.38 $(q, {}^4J$ (CH,5)=0.7, 5J (CH,6)=0.7, 6J (CH,3')=0.7, CH=N); 8.35 $(dd, {}^{4}J(2,6)=0.4, {}^{5}J(2,5)=0.6, H-C(2))$; 8.14 $(dd, {}^{3}J(5,6)=5.0, H-C(6))$; 8.08 $(dd, {}^{3}J(4',5')=2.5,$ $^{4}J(3'$,5') = 0.8 H–C(5')); 7.71 (*t*, H–C(5)); 7.68 (*td*, ³ $J(4'$,3') = 1.9, H–C(3')); 6.51 (*dd*, H–C(4')). ¹³C-NMR ((D₆)DMSO): 152.9 (C(3)); 144.2 (¹J=172.2, CH=N); 140.4 (¹J=179.5, C(6)); 139.9 (¹J=176.5, $C(2)$); 138.5 (¹J = 187.8, C(3')); 129.9 (¹J = 195.0, C(5')); 125.0 (C(4)); 119.1 (¹J = 160.1, C(5)); 107.0 (¹J=178.7, C(4')). ¹H-NMR (CDCl₃): 10.09 (br. *s*, OH); 9.23 (*d*, ⁶J(CH,3')=0.8, CH=N); 8.50 (*s*, H- $C(2)$); 8.27 (d, ³J(5,6)=4.9, H-C(6)); 7.71 (dd, ³J(4',5')=2.5, ⁴J(3',5')=0.8, H-C(5')); 7.62 (*td*, ³J(3', 4')=1.9, H-C(3')); 7.29 (*d*, H-C(5)); 6.45 (*dd*, H-C(4')). ¹³C-NMR (CDCl₃): 152.8 (C(3)); 150.3 (1 *J*=172.1, ³ *J*=6.4, CH=N); 141.2 (¹ *J*=182.4, ³ *J*=10.1, C(6)); 140.8 (1 *J*=179.9, ³ *J*=10.4, C(2)); 139.0 $(1J=188.3, 3J=9.1, 2J=5.4, C(3'))$; 129.0 $(1J=192.4, 3J=3.7, 2J=8.8, C(5'))$; 124.0 $(1J=160.7, 3J=9.1, 3J=3.7)$ $C(5)$; 122.2 (C(4)); 107.5 (1J =179.8, $^2J = ^2J = 8.8$, C(4')). Anal. calc. for C₉H₈N₄O: C 57.44, H 4.28, N 29.77; found: C 57.30, H 4.68, N 27.71.

*4-{[*C*(*E*)]-(1*H*-1,2,4-Triazol-1-ylimino)methyl}pyridin-3-ol* (**3**). TLC (CHCl3/EtOH 9 : 1): *Rf* 0.55. The crystals were purified by crystallization (CHCl₃/EtOH). M.p. 230 $^{\circ}$ (microscope), and 236.6 $^{\circ}$ with decomposition at 263.6° (DSC). ¹H-NMR ((D₆)DMSO): 10.92 (br. *s*, OH); 9.38 (*s*, CH=N); 8.99 (*s*, H-C(5')); 8.38 (*s*, H-C(2)); 8.20 (*s*, H-C(3')); 8.16 (*d*, ³*J*(5,6)=5.0, H-C(6)); 7.72 (*d*, H-C(5)). ¹³C-NMR ((D₆)DMSO): 153.1 (C(3)); 150.0 (¹J=211.1, ³J=12.4, C(3')); 147.8 (¹J=172.5, ³J=3.6, CH=N); 140.5 (¹ *J*=182.6, ³ *J*=10.9, C(6)); 140.1 (1 *J*=179.6, ³ *J*=11.2, C(2)); 134.1 (¹ *J*=218.7, ³ *J*=6.5, C(5')); 124.2 $(3J=3J=2J=6.3, C(4))$; 119.1 $(1J=164.0, 3J=9.9, 2J=4.2, C(5))$. Anal. calc. for C₈H₇N₅O: C 50.79, H 3.73, N 37.02; found: C 50.07, H 4.01, N 35.35.

*4-{[*C*(*E*)]-(1*H*-1,3,4-Triazol-1-ylimino)methyl}pyridin-3-ol* (**4**). TLC (CHCl3/EtOH 9 : 1): *Rf* 0.11. The crystals were purified by crystallization (H₂O/EtOH). M.p. 280° (microscope) and 240° (dec.; DSC). ¹H-NMR ((D₆)DMSO): 10.89 (br. *s*, OH); 9.23 (*s*, H-C(2'), H-C(5')); 9.17 (*s*, CH=N); 8.38 (*s*, H-C(2)); 8.16 (*d*, ³*J*(5,6)=5.0, H-C(6)); 7.66 (*d*, H-C(5)). ¹³C-NMR ((D₆)DMSO): 152.9 (C(3)); 152.1 (1 *J*=173.0, CH=N); 140.5 (1 *J*=182.3, ³ *J*=11.4, C(6)); 140.1 (1 *J*=179.5, ³ *J*=11.3, C(2)); 139.1 (¹J=216.1, ³J=3.3, C(2'), C(5')); 124.5 (C(4)); 119.5 (¹J=166.7, C(5)). Anal. calc. for C₈H₇N₅O.H₂O: C 46.38, H 4.38, N 33.80; found: C 46.47, H 4.41, N 34.00.

X-Ray Data Collection and Structure Refinement. Suitable crystals for X-ray diffraction experiments were obtained by crystallization from H₂O/EtOH. Data collection for compounds were carried out at r.t. with a *Bruker-Smart-CCD* diffractometer by using graphite-monochromated Mo-*K^a* radiation (*l* 0.71073 Å) operating at 50 kV and 30 mA. In all cases, data were collected over a hemisphere of the reciprocal space by combination of three exposure sets. Each exposure of 30s covered 0.3 in *w*. The cell parameter were determined and refined by a least-squares fit of all reflections. A summary of the fundamental crystal and refinement data of **1**, **3**, and **4** is given in *Table 7*. The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-square procedures on $F²$ (SHELXL-97) [20]. All non-H-atoms were refined anisotropically. All H-atoms were located on a difference *Fourier* map and refined riding on the respective C- or O-atoms. Largest peaks and holes in the final difference map were 0.165 and -0.150 , 0.175 and -0.178 , 0.154 and -0.151 e \AA^{-3} for **1, 3**, and **4**, respectively.

CCDC-285402, CCDC-285403, and CCDC-285404 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/data_request/cif from the *Cambridge Crystallographic Data Centre*.

REFERENCES

- [1] S. H. Alarcón, A. C. Olivieri, D. Sanz, R. M. Claramunt, J. Elguero, *J. Mol. Struct.* **2004**, *705*, 1.
- [2] Q. T. That, K. P. P. Nguyen, P. E. Hansen, *Magn. Reson. Chem*. **2005**, *43*, 302.
- [3] A. Filarowski, A. Koll, T. Glowiak, E. Majewski, T. Dziembowska, *Ber. Bunsenges. Phys. Chem*. **1998**, *102*, 393.
- [4] D. Sanz, A. Perona, R. M. Claramunt, J. Elguero, *Tetrahedron* **2005**, *61*, 145.
- [5] M. C. Foces-Foces, F. Hernández-Cano, R. M. Claramunt, D. Sanz, J. Catalán, F. Fabero, A. Fruchier, J. Elguero, *J. Chem. Soc., Perkin Trans. 2* **1990**, 237.
- [6] J. L. Aubagnac, R. M. Claramunt, D. Sanz, *Org. Mass Spectrom. Lett.* **1990**, *25*, 293.
- [7] L. Salazar, M. Espada, C. Avendaño, R. M. Claramunt, D. Sanz, J. Elguero, *J. Org. Chem.* **1992***, 57*, 1563.
- [8] R. M. Claramunt, D. Sanz, J. Catalán, F. Fabero, N. A. García, C. Foces-Foces, A. Llamas-Saiz, J. Elguero, *J. Chem. Soc., Perkin Trans. 2* **1993**, 1687.
- [9] A. F. Pozharski, V. V. Kuzmenko, C. Foces-Foces, A. L. Llamas-Saiz, R. M. Claramunt, D. Sanz, J. Elguero, *J. Chem. Soc., Perkin Trans. 2* **1994**, 841.
- [10] R. M. Claramunt, D. Sanz, J. Elguero, *An. Asoc. Quím. Argentina* **2001**, *89*, 15.
- [11] D. Sanz, J. A. Jiménez, R. M. Claramunt, J. Elguero, *Arkivoc* **2004**, *5*, 100.
- [12] G. Zundel, *Adv. Chem. Phys.* **2000**, *111*, 1.
- [13] C. Reichardt, 'Solvents and Solvents Effects in Organic Chemistry', 2nd edn., VCH, Weinheim, 1988.
- [14] S. Berger, S. Braun, '200 and more NMR Experiments', Wiley-VCH, Weinheim, 2004.
- [15] P. D. Murphy, *J. Magn. Reson*. **1983**, *52*, 343; *J. Magn. Reson.* **1985**, *62*, 303.
- [16] L. B. Alemany, D. M. Grant, T. D. Alger, R. J. Pugmire, *J. Am. Chem. Soc*. **1983**, *105*, 6697.
- [17] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098; A. D. Becke, *J. Chem. Phys*. **1993**, *98*, 5648; C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785; B. Miehlich, A. Savin, H. Stoll, H. Preuss, *Chem. Phys. Lett*. **1989**, *157*, 200.
- [18] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213.
- [19] 'Spartan 2002 for Windows', from Wavefunction Inc.
- [20] G. M. Sheldrick, 'SHELX97, Program for Refinement of Crystal Structure', University of Göttingen, Göttingen, Germany, 1997.

Received January 31, 2006